Recap: Normal Distribution

The heights of adult men in the United States are normally distributed with a mean
of 175 cm and a standard deviation of 8 cm.

Suppose a car is built so that anyone between the height of 150 cm and 185 cm
can drive it.

What is the probability that a randomly selected man will not be able to drive this
car?



Recap: Normal Distribution
The heights of adult men in the United States are normally distributed with a mean
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Suppose a car is built so that anyone between the height of 150 cm and 185 cm
can drive it.

What is the probability that a randomly selected man will not be able to drive this
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X ~Norm(u=175, 6=8)

P(X<150) + P(X>185)



Recap: Normal Distribution

X~ Norm(u=175, 6=8)

P(X<150) + P(X>185)

= P((X-175)/8<(150-175)/8) + P((X-175)/8>(185-175)/8)
= P(Z < -3.125) + P(Z > 1.25)

=(1-d(3.125)) + (1-P(1.25))

= (1-0.999126) + (1-0.894350)

= 0.000874 + 0.10565

= 0.106524



P(X < W-0) =P(X > 1 + o) = (1-0.68)/2=0.16=16%
P(X < W - 20) =P(X > u + 20) =(1- 0.95)/2=0.023=2.3%
P(X < 1 - 30) =P(X > u + 30) =(1- 0.997)/2=0.0013=0.13%
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Figure 4-12 Probabilities associated with a normal distribution—
well worth remembering to quickly estimate probabilities.




Molecular binding is used at multiple levels

Each level has its own molecular interaction network

% % % Regulatory network:
% | RNA-level regulation
| | by DNA-binding proteins

Protein-Protein Interaction

Network

Protein-Metabolite

Interactions:
Metabolic network




Biological example of a Gaussian: Energy of
Protein-Protein Binding Interactions

e Proteins and other biomolecules (metabolites, drugs, DNA) specifically
(and non-specifically) bind each other

e For specific bindings: Lock-and-Key theory

e For non-specific bindings: random contacts
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It has recently been demonstrated that many biological networks  (19-22). Indeed, when the two major S. cerevisiae |
exhibit a “scale-free” topology, for which the probability of ob-  protein interaction (PPI) experiments are compared w
serving a node with a certain number of edges (k) follows a power  another, one finds that only =150 of the thousands of
law: i.e., p(k) ~ k=7. This observation has been reproduced by tions identified in each experiment are recovered in th

Most Binding energy is due to hydrophobic amino-acid residues

being screened from wager

K, hydrophobic residues

M surface residues

Predicted Gaussian distribution: PDF(E;=E)— because E; — sum of

hydrophobicities of many independent residues



Matlab exercise

SIN

o o

In Matlab load PINT_binding_energy.mat with binding energy Eij (in units of KT at room
temperature) for 430 pairs of interacting proteins from human, yeast, etc.

Data collected in 2007 from the PINT database
http://www.bioinfodatabase.com/pint/
and analyzed in J. Zhang, S. Maslov, E. Shakhnovich, Molecular Systems Biology (2008)

Fit Gaussian to the distribution of Eij using dfittool

Use “Exclude” button to generate the new exclusion rule to drop all points with X<-23 from
the fit

Use "New Fit" button to generate the new “Normal” fit with the exclusion rule you just
created

Find mean (mu) and standard deviation (sigma)

Select “probability plot” from “Display type” dropdown menu to evaluate the quality of the
plot. Where does the probability plot deviate from a straight line?



How does it compare with the experimental data?
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binding energy (in units of kT)



Dissociation constant

e Interaction between two molecules (say, proteins) is usually described in
terms of dissociation constant
Kij=1M exp(-Eij/KT)

e Law of Mass Action: the concentration Dij of a heterodimer formed out of two
proteins with free (monomer) concentrations Ci and Cj : Dij=CiCj/Kij

e \What is the distribution of Kij?

o itis called log-normal since the logarithm of Kij is the binding energy -Eij/kT which is normally
distributed



Lognormal Distribution



Lognormal distribution

e Let W denote a normal random variable with mean of 8 and variance of w?,
i.e., E(W) =06 and V(W) = w?

e As a change of variable, let X = " = exp(W) and W = In(X)

e Now X is a lognormal random variable.

F(x):P[XSx]:P[exp(W)Sx]:P[Wsln(x)]

=P{Z < m(x)'9}=¢[m(x)'9}: for x>0

Q) Q)

=0 for x<0 S
In(x)-6

B dF (x) j, i e{z'—“’}
dx X2

for0<x<w

S(x)

E(X) s e9+(02/2 and V(X) o e249+(o2 (e(o2 . 1) (4_22)



Lognormal distribution







What we learned so far...

e Random Events: e Random variables:
o  Working with events as sets: union, o Mean, Variance, Standard deviation.
intersection, etc. How to work with E(g(X))
m Some events are simple: Head vs o Discrete (Uniform, Bernoulli, Binomial,
Tails, Cancer vs Healthy Poisson, Geometric, Negative binomial,
m Some are more complex: Hypergeometric, Power law);
10<Gene expression<100 PMF: f(x)=Prob(X=x); CDF:
m Some are even more complex: F(x)=Prob(X<x);
Series of dice rolls: 1,3,5,3,2 o  Continuous (Uniform, Exponential,
o Conditional probability: P(A|B)=P(A N Erlang, Gamma, Normal, Log-normal);
B)/P(B) PDF: f(x) such that Prob(X inside A)= [A
o Independent events: P(A|B)=P(A) or f(x)dx; CDF: F(x)=Prob(X<x)
P(AN B)=P(A)P(B) Next step: work with multiple random

> Bayestheorem: relates P(AIB) o PBIA) -y 3 riables measured together in the

same series of random experiments



Joint Probability
Distributions



Concept of Joint Probabilities

Biological systems are usually described not by a single random variable but by
many random variables

Example: The expression state of a human cell:
20,000 random variables X. for each of its genes

A joint probability distribution describes the behavior of several random variables

We will start with just two random variables X and Y and generalize when
necessary



Joint Probability Mass Function Defined

The joint probability mass function of the discrete random variables X and Y,
denoted as f,, (x.y), satisfies:

(D) fyxy(x,y) =0 All probabilities are non—negative
(2) Z Z fxy(x,y) =1 The sum of all probabilities is 1
Xy

3) fxv(x,y) =PX =x,Y =y)



Example: # Repeats vs. Signal Bars

You use your cell phone to check your airline reservation. It asks you to speak the
name of your departure city to the voice recognition system.

Let Y denote the number of times you have to state your departure city.

Let X denote the number of bars of signal strength on you cell phone.
Bar Chart of

y = number of
times city

name is stated

x = number of bars
of signal strength
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Marginal Probability Distributions (discrete)

For a discrete joint PDF, there are marginal distributions for each random variable,
formed by summing the joint PMF over the other variable.

fX (x):ZfXY (an)
fy(y):foy(x:y)

Called marginal because they are written in the margins



Example: # Repeats vs. Signal Bars

y = number of

X = number of bars

times city of signal strength
name is stated 1 Z 3 |fyw)=
1 0.01 0.02 0.25( 0.28
2 0.02 0.03 0.20] 0.25
3 0.02 0.10 0.05| 0.17
4 0.15 0.10 0.05|] 0.30
fx(x) = SEOESS|  1.00

I (x):ZfXY (x,y)
fy(y)=zfn(x,y)



Mean & Variance of X and Y are calculated using marginal

distributions

y = number of
times city name

X = number of bars of

signal strength

is stated 1 2 3 |fyw)=
1 0.01 0.02 0.25| 0.28

7 0.02 0.03 0.20| 0.25

3 0.02 0.10 0.05| 0.17

4 0.15 0.10 0.05| 0.30
fox)= 020 025 055 1.00




Mean & Variance of X and Y are calculated using marginal
distributions

y = number of | X = number of bars u, =E(X)
times city of signal strength
. T ower v 2ger vy =E(Y)
name is stated| 1 2 3 |fly)=ly*fly)=ly *ly)= Y
|
1 001 0.02 025 028 028 0.28 0,2= V(X) = E(X?) - E(X)?
2 0.02 003 020 025 050 100 ) ;
3 002 0.10 005 017 051 153 v = VIV =EX)-E({)
4 0.15 0.10 o.os[ 030 1.20 4.80
| .4
flx)= 020 025 055 1.00  2.49 7.61

x*f(x)= 020 050 165 | 2.35
x*f(x)= 020 1.00 495 | 6.15




Mean & Variance of X and Y are calculated using marginal
distributions

y = number of | X = number of bars
times city of signal strength
nameisstated] 1 | 2 | 3 |f)=ly*fiy)=lyFfiy)=
1 001 002 025 028 028 0.28
2 0.02 003 020 025 0.0 1.00
3 0.02 010 005 017 051 1.53
4 0.15 0.10 o.os[ 030  1.20 4.80
flx)=' 020 025 055 100 2.49 7.61
x*f(x)= 020 0.50 1.65| 2.35
x*f(x)= 020 1.00 495 | 6.15

b, =E(X) = 2.35
=E(Y) = 2.49

0,2= V(X) = E(X?) - E(X)?
=6.15 - 2.35% = 0.6275

0,2=V(Y) = E(Y?) - E(Y)?
= 7.61-2.49% = 1.4099



Conditional Probability Distributions

P(Y=y|X=x)=P(X=x,Y=y)/P(X=x)=

=f(X,y )/, (X)

y = number of
times city name

x = number of bars of
signal strength

is stated 1 2 3 fy(y)={
1 001 0.02 025] 0.28
2 002 0.03 020 025
3 002 0.10 005[ 0.17
4 0.15 0.10 0.05[ 0.30
fx)= 020 025 055 1.00

P(Y=1|X=3) =0.25/0.55 = 0.455
P(Y=2|X=3) =0.20/0.55 = 0.364
P(Y=3|X=3) =0.05/0.55 = 0.091
P(Y=4|X=3) =0.05/0.55 = 0.091



Statistically Independent Events

* Two events

Two events are independent if the following equivalent statements is true:
(1) P(4|B) = P(4)
(2) P(Bl4) = P(B)
(3) P(4NB) = P(A)P(B)

* Multiple events

The events E,, E,, ..., E, are independent if and only if for any subset of these
events E; . E;, ... . E;,

P(E, NE, N NE) = PE,) X P(E;) X -+ X KE;)




Joint Random Variable Independence

e Joint random variables are independent if any of the following are met

1) P(Y=y|X=x)=P(Y=y) for any x or
2) P(X=x|Y=y)=P(X=x) for any y or
3) P(X=x, Y=y)=P(X=x)-P(Y=y)

e If XandY and independent, the knowledge of the value of X does not change
the probabilities for the values of Y
e I[f XandY are dependent, the values of Y and influenced by the values of X



X and Y are Bernoulli variables

Y=0 Y=1
X=0 2/6 1/6
X=1 2/6 1/6
What is the marginal P,(Y=0)?
A. 1/6
B. 2/6
C. 3/6

D. 4/6



X and Y are Bernoulli variables
2/6+2/6 = 4/6

Y=0 y=1

X=0 2/6 1/6

X=1 2/6 1/6

What is the marginal P,(Y=0)?
1/6
2/6
3/6

&5 =P

4/6




X and Y are Bernoulli variables

2/6+2/6 =4/6 2/6

Y=0 Y=1
X=0 2/6 1/6
X=1 2/6 1/6

What is the marginal P,(Y=0)?

A. 1/6
B. 2/6
C. 3/6

D. 4/6

2/6+1/6 = 3/6
2/6+1/6 = 3/6



X and Y are Bernoulli variables

2/6+2/6 = 4/6 2/6

Y=0 Y=1
X=0 2/6 1/6
X=1 2/6 1/6

2/6+1/6 = 3/6
2/6+1/6 = 3/6

What is the conditional P(X=0]Y=1)?

A. 2/6
B. 1/2
C: 1/6
D. 4/6



X and Y are Bernoulli variables
2/6+2/6 =4/6 2/6

Y=0 Y=1
X=0 2/6 1/6 2/6+1/6 = 3/6
X=1 2/6 1/6 2/6+1/6 = 3/6
What is the conditional P(X=0|Y=1)?
A. 2/6
B, 1/2 P(X=0[Y=1) = P(X=0,Y=1)/P(Y=1) =
C. 1/6 (1/6)/(2/6) = 1/2

D. 4/6



X and Y are Bernoulli variables
2/6+2/6 =4/6 2/6

Y=0 Y=1
X=0 2/6 1/6
X=1 2/6 1/6

Are they independent?

A. yes
B. no

2/6+1/6 = 3/6
2/6+1/6 = 3/6



X and Y are Bernoulli variables
2/6+2/6 =4/6 2/6

Y=0 Y=1
X=0 2/6 1/6
X=1 2/6 1/6

Are they independent?

A. yes

B. no

2/6+1/6 = 3/6
2/6+1/6 = 3/6



X and Y are Bernoulli variables

Y=0 Y=1
X=0 1/2 0
X=1 0 1/2

Are they independent?

A. yes
B. no



X and Y are Bernoulli variables

Y=0 Y=1
X=0 1/2 0
X=1 0 1/2

Are they independent?

A. yes

B. no




